AUTHOR Haefele, EAwin T
TITLE Coalitions, Minority Representation, and Vote-Trading Probabilities.
INSTITUIION
REPORT NO
PUB LATE
NOTE
Resources for the Future, Inc., hashington. E.C. Reprint No. 84 Jul 70
19p.: Reprint No. 84
AVAIJABI.E FROM Resuurces for the Future, Inc. 1755 Massachusetts Avenue N. W., Washington, D. C. 20036 (Free)
JOURNAL CIT Public choice, spr 70

EDRS PRICE DESCRIPTORS

MF-\$0.65 HC-\$3.29
Environmental Influences: *Legislation; *Mathematical Models; *Political Issues; *Political Power: *Political Science; Voting

ABSIRACT

Coalitions and vote-trading probabilities exist as ways by which the political process reduces conflict and takes account of intensities of minority preferences. By creating matrices of voters and issues, ail possible winning coalition patterns were specified and the probabilities within each case were calculated. A preference vector for each voter was determined by examining the probability of vote-trading within the matrix. It was determined that as the coalition pattern moves from strong dominance by one majority to a multiplivity of majorities, the probability of trading increases. Results can also be used to determine the effect of adding issues on vote-trading possibilities. (CP)

Coalitions, Minority Representation, and Vote-Trading Probabilities

By EDWIN T. HAEFELE

RESOURCES FOR THE FUTURE, INC.

Reprinted from Public Choice, Spring 1970
(Blacksburg, Va.: Center for Study of Public Choice, Virginia Polytechnic Institute).

RESOURCES FOR THE FUTURE, INC. is a nonprofit corporation for research and education in the development, conservation, and use of natural resources and the improvement of the quality of the environment. It was establisher in 1952 with the cooperation of the Ford Foundation.

Directons: Erwin L. Canham, Chairman, Robert O. Anderson, Harrison Brown, Edward J. Cleary, Joseph L. Fisher, Luther H. Foster, F. Kenneth Hare, Charles J. Hitch, Charles F. Luce, Frank Pace, Jr., William S. Paley, Emanuel R. Piore, Stanley H. Ruttenberg, Lauren K. Soth, P. F. Watzek, Gilbert F. White. Honorery Directors: Horace M. Albright, Reuben C. Gustavson, Hugh L. Keenleyside, Edward S. Mason, Leslie A. Miller, Laurance S. Rockefeller, John W. Vanderwilt.

Officers: Joseph L. Fisher, President; Mishael F. Brewer, Vice President; John E. Herbert, Secreta. y-Treasurer.

The Resources for the Future Reprint Series: A small number of individual papers by staff members are made available for wider distribution in this form. The papers in this series are selected fur their possible value to persons interested in problems of natural resources.

CCALITIONS, MINORITY REPRESENTATION, AND VOTE-TRADING PRORABILITIES

Edwin T. Haefele*

Although there is disagreement on the normative attributes of vote-trading in iegislative bodies (is log-rolling good or bad?), there is little doubt that it exists as one of the ways the political process reduces conflict and takes account of intensities of minority preferences. The existence of coalitions of minorities was posited by Madison (in Federalist Papers no. 10) as fact and value. His argument runs along the negative side, i.e., that no tyranny of the majority can exist in the Republic because of the lack of one majority on all issues. He neglected (for good reasons) the obverse side of the ccin-minorities can band together to pass legislation as well as to defeat legislation. Americans have made gocd use of vote-trading both to pass and to defeat legislation ever since.

There has been no systematic attempt to relate the possibility of vote-trading to different coalition patterns, however, perhaps because the task is tedious and the theoretical significance (after Madison) was unrecognized until recently. ${ }^{1}$ The advent of the computer has reduced the tedium of the task, and the work of Riker [3, Ch. 2] helps ts narrow the task considerably. Riker put back into political theory the nction of the minum winning coalition (maximum individual benefit to each member of the winning coalition) and this reduces the number of cases that have theoretical significance.

In brict. Riker's theorem states that "in social situations similar to n-person, zero-sum garnes with side payments, participants create coalitions just as large as they believe will ensure winning and no larger." $[3, \mathrm{pp} .32-33 \mid$. We can assume that tational coalition formation will make all coalitions of the minimum winning variety for the purpose of comparing vote-trading in diffe ent coalition patterns.

Coalition patterns emerge from the bargaining among nembers of a legislature, committee, or commission on the issues which come bufore it. The initial coalitions are formed in the bill-drafting stage and determine initial support for each bill. If, for example, we have five legislators and two issues, only three initial patterns are possible under the assumprons of minimum winning coalitions and majority rule.

These initial patterits are:

- Resources for the Future, Inc.
${ }^{7}$ For a general statement, see Buchanan and rullock |1|. For the snalogy between votingtrading and an economic market, we Colenian $\mathbf{| 2 |}$.
(1) Case 30^{2}

(2)

Case 22

A	\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\mathbf{N} - - Pass
B	\mathbf{Y}	\mathbf{Y}	N	\mathbf{Y}	N - - Pass

Case 14

A	Y	Y	Y	N	N
B	N	N	Y	Y	Y

${ }^{2}$ Case designations are formed by counting frequency with which woters appear in the initial coalitions, thus:

This notational scheme was suggested by Elizabeth Ouenckel and can be used in designating larger matrices $(3 \times 5,4 \times 5,5 \times 5)$ by expanding to the left.

Only seven cases are possible when a third issue is added (3×5), eleven cases in the 4×5 matrix, and eighteen in the 5×5 matrix. Columns permutations can be ignored. Table 1 gives the complete list of cases through the 5×5 matrices.

Table 1. Coalition Patterns

Voting Matrix	Case Designation
2×5	30, 22, 14
3×5	300, 211, 203, 130, 122, 122A, ${ }^{\text {a }} 041$
$4 \times 5{ }^{\text {b }}$	$\begin{aligned} & 3000,2101,2020,2012,1210,1202,1121, \\ & 1040,0400,0311,1230 \end{aligned}$
$5 \times 5^{\text {b }}$	30000, 21001, 20110, 20102, 20021, 12010, 11200, 12002, 11111, 11030, 10301, 10220, u3100, 03011, 02201, 02120, 01310, 00500

> a A 1.2 case with duplication of columns.
> bSome cases have variants if duplicate columns are allowed.
2. Having all possible minimum winning coalition patterns specified, the probabilities of trading within each case can be calculated once some means of specifying preferences is decided upon. Since the object of the exercise is to compare trading probabilities among cases, the only requirement of specifying preferencer is that the method be consistent across cases and matrices. Four such specifications are used to accomplish this comparison. Each method generates some number of preference vectors for each voter.

A preference vector is a colvimn vector composed of 0 's, 1 's, and -1 's which indicates whether or not winning on one issue is more important to the voter than wirning on another. Thus a 3×5 voting matrix (a case 041),

	Voters:	1	2	3	4	5
Issue	A	Y	Y	Y	N	N
1ssue	B	Y	Y	N	Y	N
1ssue	C	N	N	Y	Y	Y

in which all issues are passing, might have a preference matrix as follows:

-1	0	0	1	0
0	0	1	0	0
1	0	-1	-1	0

where: -1 indicates membership is, a winning coalition but a willingness to trade off his vote for another issue on which he is losing;
0 indicates (if winning on the issue) an unwilling.ess to trade it off, or (if losing) an unwillingness to give up any other issue to gain this one;
1 indicates the voter is losing on the issue and is willing to trade another issue for it. One exception to this notation is explained later.

Examining the preference matrix given, we can identify possible trades by first picking out trading vectors (preference vectors which have at least one each -1 and 1). Thus, the trading vectors are:

Voter 1	Voter 3	Voter 4
-1	0	1
0	1	0
1	-1	-1

and the only trade ${ }^{3}$ is between Voters 1 and 4 on issues A and C :

Identification of such trades can be generalized so long as consistent sets of preferenre vectors are given to each voter.

Preference vectors of the type here being used are the result of combining a given vote vector, e.g., | \mathbf{N} |
| :---: |
| \mathbf{N} | with an ordering or ranking of relative interest in the issues. Such orderings are traditionally given as $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { C }\end{aligned}$, meaning that of issues A, B,

3It should be noted that the trade may or mey not be stable. What we are concerned with here is not "solutions" to each "game," but Jnly tast of whathar or not any vott-trading possibilities exist.
and C the voter thinks A is most important, B next, and C least important. The preference vector which results from $\stackrel{\underset{1}{\mathrm{~N}} \underset{\mathrm{~N}}{\mathrm{~N}}}{\mathrm{~N}}$ and $\stackrel{\begin{array}{l}\mathrm{B} \\ \mathrm{C}\end{array} \underset{\mathrm{C}}{ } \text { (assume all issues pass) }}{ }$ is $\begin{array}{r}-1 \\ \rho\end{array}$. If only the order vector was changed, say to $\underset{A}{\mathrm{~A}} \underset{\mathrm{~A}}{ }$, the preference vector would be -1

Table 2 sets up four possible ways to generate preference vectors for each voter. The likelihood of ary preference vector occurring can also be specified, but in the results which follow eqial likelihood is assumed unless otherwise noted. In analyzing real situations, empirical data could be used to make more realistic assumptions about occurrence of certain preference vectors, e.g., one vector twice as likely as another.)

Results

Tabulations of trades "inside the game" and calculation of probabilities is straightforward but tedious if done by hand. A computer program ${ }^{4}$ was devised which efficiently both tabulates trades and celculates probabilities. As with most rombinatorial problems, however, even computer storage must sooner or later give sut, so complete results are limited to the $2 \times 5,3 \times 5$, and 4×5 matrices with a few explorations into the 5×5 realm $;$ where the base for probability calculations in the Random Set is 32^{5} or $33,554,432$) and beyond.

The probatility of trading is defined as:

$$
\frac{\text { number of vector matches }}{\text { number of vector sets }}
$$

where a vector set is a selection of one vector from each voter, and the total number of vector sets is V^{n} where $\mathrm{V}=$ number of vectors per voter ${ }^{5}$ and $\mathrm{n}=$ number of voters. A vector match is defined as any vector set containing at least one trade. The vector matches are counted by an algorithm explained in the Appendix.
${ }^{4}$ Developed by Elizabeth Duenckel, whose perserverance and ingenuity is gratefully acknowledged.

[^0]
Table 2

Preterence Vector Sets for 3×5 Voting Matrices

Set

1. Strung Ordering (6 vecturs for each voter)
2. Strong Indifference (6 vectors for each voter)
3. Rotation
(3 vectors for each voter)
4. Random
(8 vectors for each voter)

Order Vectors for Generating Preference Vectors

A	A	B	B	C	C
B	C	A	C	A	B
C	B	C	A	B	A
A	B	C	BC	CA	BA
BC	CA	BA	A	B	C

A B C
B C A
C $\quad \mathrm{A} \quad \mathrm{B}$

Generate all possible preference vectors directily from a given vote vector, e.g., given $\begin{aligned} & \mathrm{Y} \\ & \mathrm{Y} \\ & \mathrm{N}\end{aligned}$ and all issues winning, the logical combinations* of $0,-1,1$ are:

-1	-1	0	0	-1	-1	0	0
-1	0	-1	0	-1	0	-1	0
1	1	1	1	0	0	0	0

*Some of these vectors assume some trading "outside the game", e.g. $\begin{array}{r}-1 \\ 0\end{array}$
indicates the voter would trade off his vote on issue A, but not for any other issue in the game.

It will be helpful to examine the 3×5 matrix first, since the cases are simple, yet show substantial variation typical of larger matrices. Table 3 gives these probabilities and they are plotted on Chart I:

Comparisons among cases within a given preference set (i.e., reading down the columns of Table 3) are the relevant comparisons to make, since the levels of probability of any case across preference sets (i.e., the rows of Table 3) are artifacts of the preference sets. It is clear, however, that regardless of which preference set is chosen, as the coalition pattern moves from strong dominance by one majority to a multiplicity of majorities (a la Madison - from case 300 to case 041), the probability of trading increases.

The imputei preference sets can also be used to see what difference adding issues makes to trading probabilities. For example, Chart II shows how trading probabilities increase as the number of issues is increased, using the Random Preference Set. ${ }^{6}$

Althcugh the overall level of probabilities is an artifact of the preference set chosen, some additional evidence of variation as issues are added is given in Chart III which uses the Rotation Set. It should be noted that, no matter what preference set is chosen, the probability of trading can only approach unity. There is always one non-trading vector set - when all preference orderings are ident'ral.

[^1]PUBLIC CHOICE

Table 3
Probability of Trading
(all calculated on equal likelihood basis and rounded to 2 decimal places)
3×5 Voting Matrix

Case	Strong Ordering Set	Rotation Set	Strong Indifference Set	Random Set
300	zero	zero	zero	zero
$211(2)^{\text {a }}$. 39	. 33	. 19	. 11
203 (3)	. 54	. 48	. 28	. 17
130 (3)	. 54	. 48	. 28	. 17
122 (4)	. 70	. 63	.43	. 27
$12 \mathrm{~A}(4)$. 75	. 68	. 49	. 31
041 (5)	. 81	. 75	. 54	. 36

${ }^{\text {a }}$ Numbers in parentheses indicate number of traders.

Case 300				
\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\mathbf{N}
\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\mathbf{N}
\mathbf{Y}	\mathbf{Y}	\mathbf{Y}	\mathbf{N}	\mathbf{N}

Case 130
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N}\end{array}$

Case 211
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N}\end{array}$

Case 122
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{N}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{N} & \mathbf{Y}\end{array}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{Y} & \mathbf{N}\end{array}$
Case 041
$\mathbf{Y} \quad \mathbf{Y} \quad \mathbf{Y} \quad \mathbf{N} \quad \mathbf{N}$
$\begin{array}{lllll}\mathbf{Y} & \mathbf{Y} & \mathbf{N} & \mathbf{Y} & \mathbf{N}\end{array}$
$\mathbf{N} \mathbf{N}, \mathbf{Y} \quad \mathbf{Y} \quad \mathbf{Y}$

CHART II
Trading Probabilities Related to Issues
(Random Preference Set)

N.B. L. Lines are supplied for visual effect. The data are, of course, discrele poinss.
2. Only upper and lower bounds of the range are plotted.

CHART III
Trading Probabilities Related to Issues
(Rotation Preference Set)

Conclusions

In "real" situations, each legislator will have, of course, only one preference vector instead of several, and the probability of trading in any legislature, commission, or committee will be a function of that one vector set. It may be worthwhile, however, when devising new commissions, special districts, or other decision structures to take some note of the number of independent issues which are likely to come before such bodies and to examine the probable coalitions and preferences which the members of the body are likely to establish relative to those issues. Thus, the issue of minority representation can be cast in a new light. If a minority representative is not likely to be needed in any minimum winning coalition, his presence does him no good and is frustrating to him. He is essentially powerless as he has nothing to trade. Likewise, if the scope of the decision body is restricted to one issue, so that all matters which come before it are likely to be strongly interdependent, then vote-trading can play only a small role in decisionmaking. As vote-trading is restricted, the probability of one dominant majority rises again with frustrating results for the minority. It also follows, aimost without saying, that if the pattern of representation (on the decision body) itself produces one dominant majority (i.e., the 300 case), then minority interests are in nowise considered except by the action of altruism, not a reliable defender of minorities.

These considerations may be made clearer by an example. Let us suppose a commission is established to study and make recommendations about water quality in a river. With this its only task, the decisions it takes are essentially mutually exclusive, that is, it faces a set of decisions such that

> water quality level A
> or water quality level B
> or water quality level C
may be chosen.
If there are three municipal and industrial water users and two conservation leaders on this commission, the outcome is fairly clear. Concessions to the conservation leaders would take place, if at all, only because of possible effects outside the commission after the recommendation had been made. This concession would have to be made, regardless, and depends not at all on the presence of the conservation incerest on the commission. While perhaps self-evident, many boards and commissions function in this fashion, and the equating of "letting minority interests have their say" with democratic process is a commonplace.

If the concern with water quality were placed in a somewhat larger context, let us say an interstate agency to manage a river basin, a different pattern emerges.

With many issues to resolve, it is less likely that one dominant majority on all issues will occur. For example, we could imagine the following agenda and voting matrix:

Bills	State 1 Rep.	State 2 Rep.	State 3 Rep.	State 4 Rep.	State 5 Rep.
Water Quality	Y	Y	N	N	Y
Effluent Charges	Y	Y	N	N	N
Construction of Dams	N	Y	Y	Y	N

Under majority rule, the first and third bills would pass, but tie plausible assumption of an order matrix:

A	A	B	A	C
B	C	A	C	B
C	B	C	B	A

yields the preference matrix:

0	0	1	1	-1
0	0	0	-1	-1
0	0	-1	-1	1

in which a trade is possible. State Representative no. 5 can trade either with no. 4 or no. 3. All three issues are hence under pressure, and the potential for striking a bargain all can live with is enhanced.

Governments of general jurisdiction have, of course, the widest selection of independent issues on which trades may be struck. The NEW YORK TIMES headline of 16 July 1969, "Oil Drilling in Alaska? It Could Determine the Senate's Vote on ABM Issue," evokes the range of potential trading at the national level. But even in the governments of general jurisdiction - at local, state, and national levels - we may, as Herbert Gans noted in a recent NEW YORK TIMES article (13 August 1969), have approached a dominant majority problem insofar as race is concerned. Î̂ a maj rity party can be (or has been) constructed without any need for Negro support, the result will leave the Negro powerless ai the national level. Even more violence could be the result.

APPENDIX

The Vector Match Counter
 by
 Elizabeth Duenckel

Identification of variables:
$\mathrm{n}=$ number of voters
$t=$ number of traders (voters with at least one trading vector)
$P=$ number of vectors per voter ($\mathrm{n} \times 1$)
$Q^{\prime}=$ number of trading vectors per voter $(n \times 1)$
$\begin{aligned} R= & \text { number of non-trading vectors per voter }(n \times 1)\left(p_{i}=q_{i}+r_{i}\right. \\ & i=1, \ldots, n)\end{aligned}$
$V=$ matrix of all vector sets, each set composed of one vector from each of the n voters
$s=$ total number of vector sets

$$
s=\prod_{i=1}^{n} p_{i}
$$

Notation for the vectors of individual voters:

Denote the group of p_{i} vectors for each voter by ascending letters of the alphabet, i.e., A - set of P_{1} vectors for Voter 1

$$
\text { E } \ldots \text { set of } P_{5} \text { vectors for Voter } 5
$$

1. Partition the p_{i} vectors for each voter i into two disjoint sets ($i=1, \ldots, n$), i.e.,

VOTE-TRADING

$$
\begin{array}{ll}
A_{1}, \ldots, A_{q_{1}} & : \quad \text { the trading vectors for Voter } 1 \\
A_{q_{1}}, \ldots, A_{q_{1}+r_{1}} & : \text { the non-trading vectors for Voter } 1
\end{array}
$$

2. For $k=2, \ldots, t$
a. Calculate w_{k}, the number of vector sets of V in which exactly k trading vectors and $n-k$ non-trading vectors occur.

$$
w_{k}=\underset{i=1}{\underset{\pi}{\pi}} q_{i} \underset{j=1}{n-k} r_{j}
$$

where i designates a voter with a trading vector, j designates a voter with a non-trading vector.
b. Determine the sets of k trading vectors, one from each of k of the t traders, in which a vector match does not occur.
c. For each non-match, calculate y, the number of times the non-match occurs in the subset of the w_{k} vectors of V.

$$
y={\underset{j=1}{\pi} r_{j}, ~}_{r_{j}}
$$

where j is not equal to any of the k traders with a non-matching trading vector. Accumulate, with each calculation of y, z_{k}, the total number of vector sets with exactly k trading vectors that do not match and $n-k$ non-trading vectors.
d. Subtract $\mathbf{z}_{\mathbf{k}}$ from $\mathbf{w}_{\mathbf{k}}$ to get $\mathbf{x}_{\mathbf{k}}$, the number of rector sets with exactly \mathbf{k} trading vectors in which at least one vector match occurs.
3. Calculate the total number of vector sets with at least one vector match, m.

$$
m=\sum_{j=2}^{t} x_{j}
$$

4. The probability of a vector match is, then, m / s.

REFERENCES

1. Buchanan, James and Tullock, Gordon. The Calculus of Consent. Ann Arbor: Univ. of Mich. Press, 1962.
2. Coleman, James. "The Possibility of a Social Welfare Function," Am. Econ. Rev. 56 (Dec. 1966), 1105-1122.
3. Riker, William. The Theory of Political Coalitions. New Haven: Yale Univ. Press, 1962.

Titles still in print
30. What is Conservation? by Orris C. Herfindahl. Reprinted from Three Studies in Minerals Economics, Resources for the Future, Inc., 1961; 25 cents.
36. Mineral Import and Stabilzation Policies, by Ortis C.. Herfindahl. Presented at the American Institute of Mining and Metallurgical Engineers Meeting, Society of Mining Engineers Minerals Economics Program, New York, February 19, 1962; 25 cents.
54. Factors in the Long-Range Competitive Setting of Shale Oil, by Hans H. Landsberg. Reprinted from New Horizons for Resources Research (Papers of the 1964 Western Resources Conference), University of Colorado Press, 1965; 25 cents.
59. Factors and Forces Affecting the Optimum Rural Settiement Pattern in the United States, by Marion Clawson. Reprinted from Economic Geography, October 1966; 25 cents.
66. The Lead-Zinc Anomaly, by David B. Brooks. Reprinted from Transactions (Society of Mining Engineers), June 1967; 25 cents.
71. Economics and the Quality of the Environment-Some Empirical Experiences, by Allen V. Kneese. Reprinted from Social Sciences and the Environment, University of Colorado Press, 1967; 25 cents.
74. Nuclear Power in East Europe, by Jaroslav G. Polach. Reprinted from East Europe, May 1968; 25 cents.
75. Latin American Urbanization: Plan or Process? by Lowdon Wingo. Reprinted from Shaping an Urban Future, by Bernard J. Frieden and William Nash, The M.I.T. Press, 1969; 25 cents.
76. Phoduction, Consumption, and Externalities, by Robert U. Ayres and Allen V. Kneese. Reprinted from American Economic Review, June 1964; 25 cents.
77. The Definition and Measurement of Drought Losses: The Northeast Drought of 1962-66, by Clifford S. Russell. Reprinted from Proceedings of the Fourth American Water Resources Conference, 1969; 25 cents.
78. Desalted Sea Water for Agriculture: Is It Economic? by Marion Clawson, Hans H. Landsberg, and Lyle T. Alexander. Reprinted from Science, June 6, 1969; 25 cents.
79. The Energy Gap in the Communist World, by Jaroslav G. Polach. Reprinted from East Europe, June 1969; 25 cents.
80. Pervasive External Costs and the Response of Society, by Allen V. Kneese and Ralph C. d'Arge. Reprinted from The Analysis and Evaluation of Public Expenditures: The PPB System, A compendium of papers submitted to the Subcommittee on Economy in Government of the Joint Economic Committee, 91 Cong. 1 sess. (1969); 25 cents.
81. Negotiation and Land Conversion, by George M. McBride and Marion Clawson. Reprinted from Journal of the American Institute of Planners, January 1970; 25 cents.
82. A New Policy Direction for American Agriculture, by Marion Clawson. Reprinted from Journal of Soil and Water Conservation, January-February 1970 (vol. 25, no. 1); 25 cents.
83. Relative Importance of Varlables in Water Resources Planning, by I. C. James II, B. T. Bower, and N. C. Matalas. Reprinted from Water Resources Research, December 1969 (vol. 5, no. 6); 25 cents.
84. Coalitions, Minohty Representation, and Vote-Trading Probabllities, by Edwin T. Haefele. Reprinted from Public Choice, Spring 1970; 25 cents.
85. The Development of Energy in East Europe, by J. G. Polach. Reprinted from Economic Developments in Countries of Eastem Europe, A compendium of papers submitted to the Subcommittee on Foreign Economic Policy of the Joint Economic Committee, 91 Cong. 2 sess. (1970); 50 cents.
Single coples available free, direct from Resources for the Future, Inc. Additional copies may be ordered at the prices spectified above.

[^0]: ${ }^{5}$ If all voters have an qqual number of vectors. If voters' vectors are unequal, then the

[^1]: ${ }^{6}$ It nould be noted that the number of vectors aach person can have doubles each time an issue is added, i.e.,

 | 23 | | | 4 | ctors pe | | person, | |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | | " | $=$ | 8 | " | * | " | , |
 | 4 | " | = | 16 | ' | " | " | , |
 | 5 | " | \cdots | 32 | " | " | " | |

 and that the bese for calculating probsbility goes up as the $5^{\text {th }}$ power of the number of vectors (5 voters). The number of times a particular vector metch (potential trade) occurs likewise incrosest.

